An Area Law for One Dimensional Quantum Systems
نویسنده
چکیده
We prove an area law for the entanglement entropy in gapped one dimensional quantum systems. The bound on the entropy grows surprisingly rapidly with the correlation length; we discuss this in terms of properties of quantum expanders and present a conjecture on completely positive maps which may provide an alternate way of arriving at an area law. We also show that, for gapped, local systems, the bound on Von Neumann entropy implies a bound on Rényi entropy for sufficiently large α < 1 and implies the ability to approximate the ground state by a matrix product state.
منابع مشابه
Simulation of two-dimensional quantum systems using a tree tensor network that exploits the entropic area law
This work explores the use of a tree tensor network ansatz to simulate the ground state of a local Hamiltonian on a two-dimensional lattice. By exploiting the entropic area law, the tree tensor network ansatz seems to produce quasiexact results in systems with sizes well beyond the reach of exact diagonalization techniques. We describe an algorithm to approximate the ground state of a local Ham...
متن کاملDesigning a hybrid quantum controller for strongly eigenstate controllable systems
In this paper, a new quantum hybrid controller for controlling the strongly eigenstate controllable systems, is designed. For this purpose, a Lyapunov control law is implemented when the target state is in reachable set of the initial state. On the other hand, if the target state is not in the reachable set of the given initial state, based on Grover algorithm, a new interface state that the t...
متن کاملEntanglement Area Law from Exponential Decay of Correlations
Area laws for entanglement in quantum many-body systems give useful information about their low-temperature behaviour and are tightly connected to the possibility of good numerical simulations. An intuition from quantum many-body physics suggests that an area law should hold whenever there is exponential decay of correlations in the system, a property found for instance in noncritical phases of...
متن کاملStatistics dependence of the entanglement entropy.
The entanglement entropy of a distinguished region of a quantum many-body system reflects the entanglement in its pure ground state. Here we establish scaling laws for this entanglement in critical quasifree fermionic and bosonic lattice systems, without resorting to numerical means. We consider the setting of D-dimensional half-spaces which allows us to exploit a connection to the one-dimensio...
متن کاملExploring and Exploiting Quantum-Dot Cellular Automata
The Full Adders (FAs) constitute the essential elements of digital systems, in a sense that they affect the circuit parameters of such systems. With respect to the MOSFET restrictions, its replacement by new devices and technologies is inevitable. QCA is one of the accomplishments in nanotechnology nominated as the candidate for MOSFET replacement. In this article 4 new layouts are presente...
متن کامل